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Big picture

What is coverage control?
Partition environment into 
territories for each agent

Robotic load balancing

Why gossip communication?
Pairwise neighbor interactions 
are minimum necessary to 
achieve goalG. W. Barlow. Hexagonal Territories.

Animal Behaviour, 22(4):876-878, 1974
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Outline

Lineage of this work
Lloyd's algorithm

Distributed partitioning & centering

Gossip coverage

Discrete gossip coverage

Gossip as minimal communication

Partitioning and centering on a graph

Example simulation

Convergence & complexity results
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Lloyd's algorithm

Place N robots at 

Partition environment into 

Define cost as expected distance:

c={c1 ... cN }

H c , p=∫p1
∥q−c1∥dq...∫pN

∥q−cN∥dq

p={ p1 ... pN }



Durham: Discrete Gossip Coverage 5

Lloyd's algorithm

Theorem (Lloyd '57 “least-square quantization”)
For fixed partition, optimal positions are centroids
For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:
Alternate position/partition optimization
Result: convergence to a centroidal voronoi partition

Theorem (Lloyd '57 “least-square quantization”)
For fixed partition, optimal positions are centroids
For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:
Alternate position/partition optimization
Result: convergence to a centroidal voronoi partition

Wikimedia Commons
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Distributed partitioning and 
centering law

At each comm round:
Acquire neighbor positions

Compute own Voronoi 
region

Move towards centroid of 
own Voronoi region

Result: convergence to a 
centroidal Voronoi partition

J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage control 
for mobile sensing networks.
IEEE Trans Robotics & Automation, 20(2):243–255, 2004
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Gossip communication

Pairwise territory exchange between neighbors

Partition regions based on bisector of centroids

Result: Convergence to the set of centroidal 
Voronoi partitions

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip 
communication: control systems on the space of partitions. 
In American Control Conference, St. Louis, MO, pages 2228-2235, June 2009.
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Discrete gossip coverage 
contributions

Main novelty: graph representation of 
environment allows

Non-convex environments with holes

Hardware implementation

Convergence to a single centroidal Voronoi partition 
of the graph in finite time

Computational complexity results
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Graph of environment

Domain of new method is 
a weighted graph:

Required properties:
Connected

Positive edge weights

G=Q , E ,w 
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Occupancy grid graph

Occupancy grid map
“Free” cells where no 
obstacle

Graph representation
Free cells are vertices

Adjacent free cells are 
neighbors

All edge weights are 
grid resolution
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Distances and sub-graphs

dG( h, k ) is the minimal 
weighted path length from 
vertex h to k in G

pi is a connected sub-graph of 
G induced by a subset of Q 

d pi
h , k ≥d G h , k  ∀ h , k∈ pi
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Voronoi partition of a sub-graph

Path distances in graph

Vertex joins partition of 
centroid it is closest to

Ties must be handled 
so partitions are 
connected
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Centroids & cost function

Centroid ci of pi is vertex which minimizes:

Total cost function:

Minimize expected distance robot i has to travel to 
reach a randomly selected vertex in pi

H ih , pi=∑
k∈ pi

d pi
h , k 

H multi-center c , p=∑
i=1

N

H i ci , pi
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The algorithm

Each agent i stores:
Sub-graph pi

Centroid ci

When random neighboring pair communicate:
Find union of sub-graphs 

Compute Voronoi partition of union based on distances 
from ci, cj inside of 

Update ci for new pi, cj for new pj

pi∪ p j

pi∪ p j



Durham: Discrete Gossip Coverage 16

Properties of the algorithm

Each pi will remain connected during evolution

Result of partitioning based on distances in 

Centroid ci is always a vertex of pi

Therefore, cost function is well-defined

Total cost decreases whenever partition or 
centroids change

pi∪ p j
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A simple example

Four robots in an empty square room, 
simulated using Player/Stage



Durham: Discrete Gossip Coverage 18

A simple example

Initial partitioning of the environment
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A simple example
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A simple example

First pairwise communication
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A simple example

Result of first pairwise territory swap – Dark 
blue takes cells from Cyan
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A simple example

Second pairwise territory swap – Red takes 
cells from Dark blue



Durham: Discrete Gossip Coverage 23

A simple example

Third pairwise territory swap – Red again 
takes cells from Dark Blue
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A simple example

Final equilibrium territories
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A simple example

Cost functions over iterations
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Convergence proof sketch

Extension of LaSalle invariance principle
State space P: finite set of connected N-partitions of G

Algorithm defines a set-valued map 

Cost-function decreases for each 

The equilibria of T are the set of centroidal Voronoi 
partitions of G

Therefore, the system converges to a centroidal Voronoi 
partition in finite time

T : P P

T ∖{identity }



Durham: Discrete Gossip Coverage 27

Computational complexity

Key computation: distance from one vertex to all 
others in sub-graph of G

If edge weights are uniform, can use Breadth-First-
Search approach in linear time

Otherwise, Dijkstra's algorithm requires log linear time

Computing centroid of sub-graph pi is most 
complex aspect, three options:

Exhaustive search: 

Gradient Descent: 

Linear-time approximation: 

O ∣pi∣
2

O ∣pi∣log ∣pi∣
O ∣pi∣



Durham: Discrete Gossip Coverage 28

A more complex simulation

Ten agents in a non-convex environment with holes



Durham: Discrete Gossip Coverage 29

Conclusions

Distributed partitioning of a graph using gossip 
communication

Graph can represent complex non-convex environment

Each robot's sub-graph is always connected

Convergence to a centroidal Voronoi partition in 
finite time

Computational complexity can scale well
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Future work

Motion protocol so robots seek out their neighbors

Agent arrival, departure, and failure

Method to avoid local minima in cost function
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Thank you

Questions?
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