Discrete Coverage Control for Gossiping Robots

Joseph W. Durham

Center for Control, Dynamical Systems and Computation University of California at Santa Barbara http://motion.mee.ucsb.edu/~joey

DSC Conference, Hollywood, Oct 2009

Collaborators: Paolo Frasca, Ruggero Carli, Francesco Bullo

Big picture

G. W. Barlow. Hexagonal Territories. Animal Behaviour, 22(4):876-878, 1974

What is coverage control?

- Partition environment into territories for each agent
- Robotic load balancing

Why gossip communication?

 Pairwise neighbor interactions are minimum necessary to achieve goal

Outline

- Lineage of this work
 - Lloyd's algorithm
 - Distributed partitioning & centering
 - Gossip coverage
 - Discrete gossip coverage
- Gossip as minimal communication
- Partitioning and centering on a graph
- Example simulation
- Convergence & complexity results

Lloyd's algorithm

- Place N robots at $c = \{c_1 \dots c_N\}$
- Partition environment into $p = \{p_1 \dots p_N\}$
- Define cost as expected distance:

$$H(c, p) = \int_{p_1} ||q - c_1|| dq + \dots + \int_{p_N} ||q - c_N|| dq$$

Lloyd's algorithm

Theorem (Lloyd '57 "least-square quantization")

- For fixed partition, optimal positions are centroids
- For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:

- Alternate position/partition optimization
- Result: convergence to a centroidal voronoi partition

Wikimedia Commons

Lloyd's algorithm

- Place N robots at $c = \{c_1 \dots c_N\}$
- Partition environment into $p = \{p_1 \dots p_N\}$
- Define cost as expected distance:

$$H(c, p) = \int_{p_1} ||q - c_1|| dq + \dots + \int_{p_N} ||q - c_N|| dq$$

Theorem (Lloyd '57 "least-square quantization")For fixed partition, optimal positions are centroids

For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:

- Alternate position/partition optimization
- Result: convergence to a centroidal voronoi partition

Distributed partitioning and centering law

- At each comm round:
 - Acquire neighbor positions
 - Compute own Voronoi region
 - Move towards centroid of own Voronoi region
- Result: convergence to a centroidal Voronoi partition

J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks. IEEE Trans Robotics & Automation, 20(2):243–255, 2004

Gossip communication

- Pairwise territory exchange between neighbors
- Partition regions based on bisector of centroids
- Result: Convergence to the set of centroidal Voronoi partitions

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip communication: control systems on the space of partitions. In American Control Conference, St. Louis, MO, pages 2228-2235, June 2009.

Discrete gossip coverage contributions

- Main novelty: graph representation of environment allows
 - Non-convex environments with holes
 - Hardware implementation
- Convergence to a single centroidal Voronoi partition of the graph in finite time
- Computational complexity results

Graph of environment

 Domain of new method is a weighted graph:

G = (Q, E, w)

- Required properties:
 - Connected
 - Positive edge weights

Occupancy grid graph

- Occupancy grid map
 - "Free" cells where no obstacle
- Graph representation
 - Free cells are vertices
 - Adjacent free cells are neighbors
 - All edge weights are grid resolution

Distances and sub-graphs

- d_G(h, k) is the minimal
 weighted path length from
 vertex h to k in G
- *p_i* is a connected sub-graph of
 G induced by a subset of *Q*

$$d_{p_i}(h,k) \ge d_G(h,k) \quad \forall h, k \in p_i$$

Voronoi partition of a sub-graph

- Path distances in graph
- Vertex joins partition of centroid it is closest to
- Ties must be handled so partitions are connected

Centroids & cost function

• Centroid c_i of p_i is vertex which minimizes:

$$H_{i}(h, p_{i}) = \sum_{k \in p_{i}} d_{p_{i}}(h, k)$$

• Total cost function:

$$H_{\text{multi-center}}(c, p) = \sum_{i=1}^{N} H_i(c_i, p_i)$$

 Minimize expected distance robot *i* has to travel to reach a randomly selected vertex in *p_i*

The algorithm

- Each agent *i* stores:
 - Sub-graph p_i
 - Centroid c_i
- When random neighboring pair communicate:
 - Find union of sub-graphs $p_i \cup p_j$
 - Compute Voronoi partition of union based on distances from c_i, c_j inside of p_i∪p_j
 - Update c_i for new p_i , c_j for new p_j

Properties of the algorithm

- Each p_i will remain connected during evolution
 - Result of partitioning based on distances in $p_i \cup p_j$
 - Centroid c_i is always a vertex of p_i
 - Therefore, cost function is well-defined
- Total cost decreases whenever partition or centroids change

Four robots in an empty square room, simulated using Player/Stage

Initial partitioning of the environment

First pairwise communication

Result of first pairwise territory swap – Dark blue takes cells from Cyan

Second pairwise territory swap – Red takes cells from Dark blue

Third pairwise territory swap – Red again takes cells from Dark Blue

Final equilibrium territories

Cost functions over iterations

Convergence proof sketch

- Extension of LaSalle invariance principle
 - State space P: finite set of connected N-partitions of G
 - Algorithm defines a set-valued map $T: P \rightarrow P$
 - Cost-function decreases for each $T \setminus \{\text{identity}\}$
 - The equilibria of T are the set of centroidal Voronoi partitions of G
 - Therefore, the system converges to a centroidal Voronoi partition in finite time

Computational complexity

- Key computation: distance from one vertex to all others in sub-graph of G
 - If edge weights are uniform, can use Breadth-First-Search approach in linear time
 - Otherwise, Dijkstra's algorithm requires log linear time
- Computing centroid of sub-graph p_i is most complex aspect, three options:
 - Exhaustive search: $O(|p_i|^2)$
 - Gradient Descent: $O(|p_i|\log(|p_i|))$
 - Linear-time approximation: $O(|p_i|)$

A more complex simulation

Ten agents in a non-convex environment with holes

Conclusions

- Distributed partitioning of a graph using gossip communication
 - Graph can represent complex non-convex environment
 - Each robot's sub-graph is always connected
- Convergence to a centroidal Voronoi partition in finite time
- Computational complexity can scale well

Future work

- Motion protocol so robots seek out their neighbors
- Agent arrival, departure, and failure
- Method to avoid local minima in cost function

Thank you

Questions?

