Discrete Coverage Control for Gossiping Robots

Joseph W. Durham
Center for Control, Dynamical Systems and Computation
University of California at Santa Barbara http://motion.mee.ucsb.edu/~joey

DSC Conference, Hollywood, Oct 2009
Collaborators: Paolo Frasca, Ruggero Carli, Francesco Bullo

Big picture

[^0]What is coverage control?

- Partition environment into territories for each agent
- Robotic load balancing

Why gossip communication?

- Pairwise neighbor interactions are minimum necessary to achieve goal

Outline

- Lineage of this work
- Lloyd's algorithm
- Distributed partitioning \& centering
- Gossip coverage
- Discrete gossip coverage
- Gossip as minimal communication
- Partitioning and centering on a graph
- Example simulation
- Convergence \& complexity results

Lloyd's algorithm

- Place N robots at $c=\left\{c_{1} \ldots c_{N}\right\}$
- Partition environment into $p=\left\{p_{1} \ldots p_{N}\right\}$
- Define cost as expected distance:

$$
H(c, p)=\int_{p_{1}}\left\|q-c_{1}\right\| d q+\ldots+\int_{p_{N}}\left\|q-c_{N}\right\| d q
$$

Lloyd's algorithm

Theorem (Lloyd '57 "least-square quantization")

- For fixed partition, optimal positions are centroids
- For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:

- Alternate position/partition optimization
- Result: convergence to a centroidal voronoi partition

Wikimedia Commons

Lloyd's algorithm

- Place N robots at $c=\left\{c_{1} \ldots c_{N}\right\}$
- Partition environment into $p=\left\{p_{1} \ldots p_{N}\right\}$
- Define cost as expected distance:

$$
H(c, p)=\int_{p_{1}}\left\|q-c_{1}\right\| d q+\ldots+\int_{p_{N}}\left\|q-c_{N}\right\| d q
$$

Theorem (Lloyd '57 "least-square quantization")

- For fixed partition, optimal positions are centroids
- For fixed positions, optimal partition is Voronoi

Lloyd's algorithm:

- Alternate position/partition optimization
- Result: convergence to a centroidal voronoi partition

Distributed partitioning and centering law

- At each comm round:
- Acquire neighbor positions
- Compute own Voronoi region
- Move towards centroid of own Voronoi region
- Result: convergence to a centroidal Voronoi partition

[^1]
Gossip communication

- Pairwise territory exchange between neighbors
- Partition regions based on bisector of centroids
- Result: Convergence to the set of centroidal Voronoi partitions

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip
communication: control systems on the space of partitions.
In American Control Conference, St. Louis, MO, pages 2228-2235, June 2009.

Discrete gossip coverage contributions

- Main novelty: graph representation of environment allows
- Non-convex environments with holes
- Hardware implementation
- Convergence to a single centroidal Voronoi partition of the graph in finite time
- Computational complexity results

Graph of environment

- Domain of new method is a weighted graph:

$$
G=(Q, E, w)
$$

- Required properties:
- Connected
- Positive edge weights

Occupancy grid graph

- Occupancy grid map
- "Free" cells where no obstacle
- Graph representation
- Free cells are vertices
- Adjacent free cells are neighbors
- All edge weights are
 grid resolution

Distances and sub-graphs

- $d_{G}(h, k)$ is the minimal weighted path length from vertex h to k in G
- p_{i} is a connected sub-graph of G induced by a subset of Q

$$
d_{p_{i}}(h, k) \geq d_{G}(h, k) \quad \forall h, k \in p_{i}
$$

Voronoi partition of a sub-graph

- Path distances in graph
- Vertex joins partition of centroid it is closest to
- Ties must be handled so partitions are connected

Centroids \& cost function

- Centroid c_{i} of p_{i} is vertex which minimizes:

$$
H_{i}\left(h, p_{i}\right)=\sum_{k \in p_{i}} d_{p_{i}}(h, k)
$$

- Total cost function:

$$
H_{\text {multi-center }}(c, p)=\sum_{i=1}^{N} H_{i}\left(c_{i}, p_{i}\right)
$$

- Minimize expected distance robot i has to travel to reach a randomly selected vertex in p_{i}

The algorithm

- Each agent i stores:
- Sub-graph p_{i}
- Centroid c_{i}
- When random neighboring pair communicate:
- Find union of sub-graphs $p_{i} \cup p_{j}$
- Compute Voronoi partition of union based on distances from c_{i}, c_{j} inside of $p_{i} \cup p_{j}$
- Update c_{i} for new $p_{i^{\prime}} c_{j}$ for new p_{j}

Properties of the algorithm

- Each p_{i} will remain connected during evolution
- Result of partitioning based on distances in $p_{i} \cup p_{j}$
- Centroid c_{i} is always a vertex of p_{i}
- Therefore, cost function is well-defined
- Total cost decreases whenever partition or centroids change

A simple example

Four robots in an empty square room, simulated using Player/Stage

Durham: Discrete Gossip Coverage

A simple example

Initial partitioning of the environment

A simple example

A simple example

First pairwise communication

A simple example

Result of first pairwise territory swap - Dark blue takes cells from Cyan

A simple example

Second pairwise territory swap - Red takes cells from Dark blue

A simple example

Third pairwise territory swap - Red again takes cells from Dark Blue

A simple example

Final equilibrium territories

A simple example

Cost functions over iterations

Convergence proof sketch

- Extension of LaSalle invariance principle
- State space P : finite set of connected N-partitions of G
- Algorithm defines a set-valued map $T: P \rightarrow P$
- Cost-function decreases for each $T \backslash\{$ identity $\}$
- The equilibria of T are the set of centroidal Voronoi partitions of G
- Therefore, the system converges to a centroidal Voronoi partition in finite time

Computational complexity

- Key computation: distance from one vertex to all others in sub-graph of G
- If edge weights are uniform, can use Breadth-FirstSearch approach in linear time
- Otherwise, Dijkstra's algorithm requires log linear time
- Computing centroid of sub-graph p_{i} is most complex aspect, three options:
- Exhaustive search: $O\left(\left|p_{i}\right|^{2}\right)$
- Gradient Descent: $O\left(\left|p_{i}\right| \log \left(\left|p_{i}\right|\right)\right)$
- Linear-time approximation: $O\left(\left|p_{i}\right|\right)$

A more complex simulation

Ten agents in a non-convex environment with holes

Conclusions

- Distributed partitioning of a graph using gossip communication
- Graph can represent complex non-convex environment
- Each robot's sub-graph is always connected
- Convergence to a centroidal Voronoi partition in finite time
- Computational complexity can scale well

Future work

- Motion protocol so robots seek out their neighbors
- Agent arrival, departure, and failure
- Method to avoid local minima in cost function

Thank you

Questions?

[^0]: G. W. Barlow. Hexagonal Territories. Animal Behaviour, 22(4):876-878, 1974

[^1]: J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks.
 IEEE Trans Robotics \& Automation, 20(2):243-255, 2004

